PS-15

Isolated acute dysphagia as a rare presentation of Guillain Barré Syndrome showing complete recovery: A Case Report Soo Ho Lee¹, M.D., Ji Yoon Jung¹, M.D., Mi-Jeong Yoon¹, M.D., Ph.D., Joon-Sung Kim¹, M.D., Ph.D.,

Bo Young Hong¹, M.D., Ph.D., Sun Im², M.D., Ph.D., <u>Yeun Jie Yoo¹, M.D., Ph.D.</u>*

1. Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea 2. Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea

Case description

A 76-year-old woman was hospitalized with sudden-onset dysphagia during meals, her second episode of dysphagia. Three years ago, she experienced transient dysphagia which spontaneously resolved after a week. She had a history of left PCA infarction 9 years ago, but there were no neurological sequelae. She denied any recent history of vaccination, infective illness prior to the onset of symptoms. She experienced coughing with sputum and lost 9 kg in 2 weeks. Apart from bilateral loss of the gag reflex, other cranial nerve functions appeared intact. There was no weakness in the neck or limb muscles, and sensory examination was normal. Deep tendon reflexes were normal in the upper limbs and mildly decreased in the lower limbs, without signs of pathologic reflexes. Results from brain imaging, electrophysiologic studies, and laboratory tests collectively indicated a low probability of other conditions causing dysphagia. Based on the acute monophasic progression of disease course and CSF analysis result showing albuminocytological dissociation, we consequently diagnosed the patient with an atypical variant of Guillain-Barré syndrome (GBS), specifically involving cranial nerve (CN) X, and initiated intravenous immunoglobulin (IVIg) treatment for 5 days, from day 21 to day 25 of the illness. The patient showed a rapid response to IVIg treatment, with symptoms beginning to improve from the first day. Complete recovery of dysphagia was confirmed on VFSS performed on day 48 of onset to safely consume any food without restriction.

Serial VFSS study of the patient

(A) day 6 from onset

(B) day 28 from onset (7 days after IVIg Treatment)

(C) day 48 from onset (27 days after IVIg Treatment)

Figure 1.

(A-C) Serial Video Fluoroscopic Swallowing Study (VFSS) of the patient on day 6, day 28, and day 48 of the illness, using thin liquid (International Dysphagia Diet Standardization Initiative (IDDSI) level 0), pureed food (IDDSI level 4), and minced food (IDDSI level 5).

Differential diagnosis of the patient with oropharyngeal dysphagia

Oropharyngeal dysphagia

Structural	Neuro	ogenic	Myo	genic		
Zenker's diverticulum, Head & Neck cancer, Esophageal web, Pharyngeal				s, Inflammatory neoplastic syndrome,		
infection, Osteophyte, Prior surgery, Prior radiotherapy, Thyromegaly	sclerosis, NMOSD, Guillain-Barre		Oculopharyngeal muscular dystrophy, Myotonic dystrophy			
Laryngoscopy, Neck CT	Brain MRI	NCS, EMG, RNS		Lab		
Unremarkable findings						
		Tumor marker	rs	WNL		
Paraneoplastic antibodies			All negative			
Rheumatoid markers				WNL		
Anti-GM1 A	b IgM/IgG -/-	Myasthenia gr	avis antibodies	All negative		
Anti-GD1b A	Ab IgM/IgG -/- -	- Antigangliosid	le antibodies	All negative		
Anti-GQ1b A	Ab IgM/IgG -/-	CSF study		Albuminocytologic		

GBS spectrum diseases

GBS spectrum core feature	GBS spectrum supportive feature		
 Mostly symmetric limb and/or motor cranial n. weaknes 	Hx. of antecedent illness (up to 4 wks before onset)		
Monophasic course, onset - nadir interval: 12hrs~28days	CSF analysis: albuminocytological dissociation		
 Other possible mimic diseases are excluded 	Presence of IgG against neural antigens (gangliosides)		

Classic GBS	Pharyngeal-cervical- brachial weakness	Acute bulbar palsy (APB)	Miller-Fisher syndrome
Limb/Bulbar weakness	Cervical, arm weakness	Prominent bulbar palsy	Opthalmoplegia
Respiratory weakness	Areflexia in upper limb	without neck/limb weakness	Ataxia
Sensory deficit	Bulbar weakness	Plus feature (ABPp)	Areflexia

Conclusion

Dysphagia in the elderly constitutes a critical condition that can substantially increase patient morbidity and mortality, even over a short duration. With a thorough evaluation of systems impacting the swallowing mechanism and awareness of uncommon causative factors, such as neuro-autoimmunity, clinicians can implement effective disease-modifying therapies, potentially leading to the resolution of dysphagic symptoms..