

Identification of Genetic Biomarkers for Ankylosing Spondylitis and Multiple Sclerosis

Seung Don Yoo M.D.¹, Jong Ha Lee M.D.², Dong Hwan Yun M.D.², Dong Hwan Kim M.D.¹, Seung Ah Lee M.D.¹, Jinmann Chon M.D.², Sung Joon Chung M.D.¹, Yun Soo Soh M.D.², Myung Chul Yoo M.D.², Ga Yang Shim M.D.², Eo Jin Park M.D.¹, Ji Min Kim M.D.¹

Department of Physical Medicine and Rehabilitation, College of Medicine, Kyung Hee University at Gangdong¹, Department of Physical Medicine and Rehabilitation, College of Medicine, Kyung Hee University²

OBJECTIVE

Ankylosing spondylitis (AS) is a persistent inflammatory including only genes that were significantly expressed in condition that predominantly impacts the spine and each cell. Significant gene expression in the final 10 cells sacroiliac joints. However, it may also affect other joints differed between the AS and MS groups compared to the control group.

and organs. It is a form of arthritis, characterized by inflammation, pain, and stiffness in affected areas. Multiple sclerosis (MS) is a disorder that can impact the brain and spinal cord, leading to a variety of symptoms such as issues with vision, movement of limbs, sensation and balance. Both MS and AS are autoimmune diseases characterized by inflammation. In this study, we examined single-cell RNA sequencing data for AS and MS obtained from a public database, collected and analyzed the datasets, and conducted gene expression analyses across various cell types.

1. Data download - 5 data - gene expression count 2. Data QC - MT percentage - By Phython Scanpy 3. Data Cluster - Each cluster the pe - By UMAP

Table 1. Information of the Dataset Used in the Analysis

		Control	AS	MS	MS
]	Dataset ID	EGAD00001007 718	GSE194315	GSE138266	GSE163005
F	Technology	Illumina NovaSeq 6000	Illumina NovaSeq 6000	Illumina NextSeq 500	Illumina NextSeq 500, Illumina NextSeq 6000
	Source	PBMC	PBMC	CSF, PBMC	CSF, PBMC
, ,	Samples	268	48	22	38
worl	Overall Design	Single-cell data gene expression data set (5'Chromium 10X) of healthy paediatric volunteers, and paediatric and adult COVID-19 patients. Gene expression	RNA and surface epitope sequencing of peripheral blood mononuclear cells in 28 patients with PSA, 10 patients with AS, 24 patients with cutaneous PSO, 14 psoriasis patients with unclear PSX, and 29	5 vs 5 Case-Control design for the single-cell RNA seq experiment. Each donor provided 2 samples from the CSF and PBMC.	Single-cell RNA sequencing of cerebrospinal fluid- derived leukocytes from patients with Neuro-COVID (n=8), non- inflammatory (n = 9) and autoimmune (n=9) neurological
	n family	was determined	healthy subjects.		diseases and viral

encephalitis (n=5).

Figure 1. Study design

Abbreviations: MT, mitochondria; QC, quality control; UMAP, Uniform Manifold Approximation and Projection; DEG, differentiated expressed gene; AS, ankylosing spondylitis; MS, multiple sclerosis; PBMC, peripheral blood monocytes; CSF, cerebrospinal fluid

METHOD

Single-cell datasets were obtained from the cellxgene and Gene Expression Omnibus databases. Two different datasets related to AS and MS in humans were analyzed. The study included 10 samples for controls, 10 for patients with AS, and 23 for patients with MS. Single-cell mRNA sequencing data were analyzed. Statistical significance was determined through the Student's t-test between each group.

Table 2. Classification of Cell Types Including **Significant Genes in the AS and MS Groups**

Cell types	AS group	MS group
Naive B cell	Significant	Significant
Platelet	No significant	No significant
Plasmacytoid dendritic cell	No significant	No significant
Classical monocyte	Significant	Significant
Non-classical monocyte	Significant	Significant
Central memory CD8-		

RESULTS

Quality control was performed for each dataset, considering the percentage of mitochondrial genes and total number of genes. The Uniform Manifold Approximation and Projection program was used to divide the integrated data into regions based on the genes for each dataset (control, AS, and MS groups). Cluster analysis confirmed that the integrated data were divided into 16 zones. The number of genes expressed in the 16 zones was analyzed and compared between peripheral blood mononuclear cell (PBMC) and cerebrospinal fluid (CSF). Cluster and heat map analyses were performed,

positive, alpha-beta T cell	Significant	No significant
Regulatory T cell	Significant	Significant
CD16-negative, CD56-bright natural killer cell, human	No significant	No significant
CD8-positive, alpha-beta cytotoxic T cell	Significant	Significant
Natural killer cell	Significant	Significant

Abbreviations: AS, ankylosing spondylitis; MS, multiple sclerosis

CONCLUSION

Naive B cells; classical and non-classical monocytes; regulatory T cells; CD8-positive, alpha-beta cytotoxic T cells; and NK cells expressed numerous significant genes involved in the development of AS and MS. Although central memory CD8-positive, alpha-beta T cells are not significantly associated with MS, they expressed genes involved in the pathogenesis of AS.

