

Effects of Wearable Exoskeletal Robot-Assisted Gait Training in a Patient with Severe Sarcopenia

Au-Jin Wang MD1, Gi-Wook Kim, MD, PhD1,2, Myoung-Hwan Ko, MD PhD1,2, Jeong-Hwan Seo, MD, PhD1,2, Sung-Hee Park, MD, PhD1,2, Da-Sol Kim MD PhD1,2

¹Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Korea ²Research Institute of Clinical Medicine, Biomedical Research Institute of Jeonbuk National University Hospital

Introduction

• Sarcopenia

- ✓ Loss of skeletal muscle mass, strength, and function
- ✓ Associated with aging, decreased physical activity, malnutrition, post-surgery complications
- Wearable exoskeletal robot –assisted gait training(RAGT)
 - ✓ Effective for sarcopenia patient
 - ✓ Differ with previous tethered exoskeleton in that it needs more patient's active participation
- This study aimed to investigate the effectiveness of wearable exoskeletal RAGT using ANGEL LEGS M20-B-C3[™] machine on patient with severe sarcopenia

Case presentation (42/F)

Chief complaints	Decreased functional ability		
Onset	6 months ago		
Vector	Post-surgery complications (Panperitonitis, jejunal feeding, transhepatic bile drainage), bed-ridden state for 6months, poor nutrition		
Past history None			
Evaluation	 Body weight: 33kg(weight loss 20kg over 6months) 		
	✓ Hand grip strength : 6.6kg		
	 Short Physical Performance Battery (SPPB) score : 3 		
	 Electrodiagnostic study generalized peripheral sensorimotor neuropathy, 		

Figure 1. Current operation site wound and delayed gastric emptying in gastrographin test.

primarily of the axonal loss type

Figure 2. Rehabilitation protocol

The patient received step-by-step training through RAGT for 30 minutes once a day, 5 days a week, for 3 weeks.

A. In the initial first week, the patient underwent sit-to-stand exercises and standing balance training.B. In the second week, the patient used a weight-supported gait training device with a harness for assistance and received weight support from two therapists during the training.

C. In the third week, the patient used a standard rolling walker and received weight support from one therapist.

	Before training	3weeks after training	
FAC	1	2	
MBI	47	56	Ta
BBS	15	27	b
2mWT(m)	37	60	
10MWT(Average speed, m/s)	0.27	0.59	

Table 2. Change of evaluationbefore and after the training

Functional Ambulation Category(FAC), Berg Balance Scale(BBS), Modified Barthel Index(MBI), 2 Minute Walk Test(2mWT), 10meter Walk test(10MWT)

Conclusion

• Wearable exoskeletal robot-assisted gait training can significantly improve balance, gait speed, and functional ability in patients with severe sarcopenia. More research is needed to determine the effects, timing, and duration of wearable RAGT.