Changes in muscle activity according to the training mode of gait-assistive robots for children with cerebral palsy

So Ra Park¹), Ji Hye Jung²), Yoo Jin Sa²), Hyun-Kyung Kim²)

1) Department of Rehabilitation & Assistive Technology, 2) Department of Rehabilitation Medicine, National Rehabilitation Center, 58 Samgaksan-ro, Seoul, Republic of Korea, 01022

Objective

- In pediatric physical therapy, muscle contraction > Most children showed increased gluteus medius and through voluntary and active movement is crucial.
- > Gait training using robots allows for repeated training of normal walking movements, and it also enables passive movement with the robot's assistance.
- > However, research is still limited on the training modes of robot-assisted gait training.
- > This study aimed to examine changes in muscle activity according to the training mode combinations of a gaitassistance robot for children with cerebral palsy in order to determine the most effective training method.

Materials and Methods

> Inclusion

- Cerebral palsy, GMFCS III~V
- Training mode(Lokomat pro, Hocoma, Switzerland)

8 combination modes (2 speed x 2 BWS x 2 GF)
-----------------------	-------------------------

Mode	Walking speed	Body weight support	Guidance force
А	0.51	80%	100%
В		o 51 //	50%
С	0.5Km/n	0.5km/h 50%	100%
D			50%
Е		80%	100%
F	1. Oliver //r		50%
G	1.0km/h	1.0km/n 50%	100%
Н			50%

- 5 minutes for each training mode and 2 minutes of rest between modes (54 minutes total)
- Applied to each child in randomized order (taken three times within three weeks)

Measurement

- Muscle activity of the lower extremity
 - Amplitude using a surface EMG device (Trigno Wireless EMG [®], Delsys, U.S.A.)
- Compared muscle activities in terms of the variations in Walking speed, BWS, GF

Results

> 5 children with cerebral palsy were enrolled(Table 1). Table 1. General characteristics of children with cerebral palsy

	Age(years)	Gender	GMFCS level
1	5	Female	III
2	5	Female	III
3	12	Female	IV
4	13	Female	III
5	6	Female	III

vastus medialis activities during the stance phase at faster walking speeds (Table 2).

Table 2. Number of children with increased lower limb muscle
activity at a fast walking speed

Stance	Gmax	Gmed	VM	BF	TA
Left	1	3	3	2	2
Right	3	3	4	4	2
Swing	Gmax	Gmed	VM	BF	TA
Swing Left	Gmax 2	Gmed 3	VМ 3	BF 3	ТА 2

> With low body weight support, most children showed increased vastus medialis activity during the stance phase (Table 3).

Table 2. Number of children with increased lower limb muscle
activity at a fast walking speed

Stacne	Gmax	Gmed	VM	BF	TA
Left	1	1	3	3	3
Right	1	1	3	1	1
Swing	Gmax	Gmed	VM	BF	TA
Swing Left	Gmax 2	Gmed 1	VM 1	BF 1	ТА 2

> There were no significant differences in muscle activities according to guidance force.

Conclusion

- > This study showed that the muscle activity of the lower limbs varied according to the walking speed and level of body weight support in the robot-assisted gait training mode.
- > This indicates that adjusting the robot's walking speed and body weight support can lead to lower-limb muscle activation in children. In other words, the combination of training modes can affect the effectiveness of the gait-assistive robot.
- > Studies should continue to explore the optimal training mode combinations that increase lower limb muscle activities.

Ministry of Health and Welfare This research was supported by a grant (NRCTR-IN23005) of the Korea National Rehabilitation Center, Ministry of Health & Welfare.