

Socioeconomic accessibility for rehabilitation therapy for patients with stroke: Using a national representative administrative dataset

Hyun Mi Oh¹, Miji Kim^{2,3}, Jaehong Yoon^{2,3}, Ja-Ho Leigh^{1,2,3,4} *

1 Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea 2 National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea 3 Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea 4 Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea

OBJECTIVES

This study aimed to examine the associated factors, including Socioeconomic status, for accessibility of rehabilitation among stroke patients using administrative claims data.

RESULTS

Table 1. Distribution of study population, the number of rehabilitation therapy, and rehabilitation therapy by covariates among stroke inpatients in 2019

			Total	The number of people with				
	Population		The number of rehabilitati on therapy			rehabilitation therapy (41 days/year or more)		
	Ν	%	Amount	SD		N	%	
Total	64460	100.0	37.1	0.4	P-value ^a	9392	14.6	– P-value ^b
Demographic factors								

METHODS & MATERIALS

Study population & data

- \triangleright Administrative claims data from 2018 to 2020 from National Health Insurance (NHI) database in Korea.
- \geq A total of 64,460 stroke inpatients with subarachnoid haemorrhage (160), ischemic stroke (163, 164), and intracranial haemorrhage (161, 162) were followed 365 days after the first stroke onset in 2019.

Measurement

- > Outcome variables: Rehabilitation therapy (MM105)
 - Receiving rehabilitation was defined as 41 days or more

				0.000			0 4000
Income levels				0.008			0.4296
Q1 20808	32.3	35.5	0.6		2965	14.3	
Q2 14820	23.0	37.0	0.8		2159	14.6	
Q3 11484	17.8	37.6	0.9		1675	14.6	
Q4 13233	20.5	38.5	0.8		1985	15.0	
Medical Aid 4115	6.4	40.5	1.6		608	14.8	
Residential area		1010		<.0001			<.0001
Capital 28261	43.8	37.6	0.6		4128	14.6	
Urban 11956	18.6	41.4	0.9		1915	16.0	
Rural 24243	37.6	34.5	0.6		3349	13.8	
Clinical factors	57.0	<u> </u>	0.0			15.0	
Type of stroke				<.0001			<.0001
SAH 5833	9.1	38.6	1.2	<.0001	939	16.1	<.0001
	74.6		0.4		5920	12.3	
IS 48085		31.2					
ICH 10542	16.4	63.6	1.2	0001	2533	24.0	0001
Hypertension				<.0001		0.0	<.0001
No 20317	31.5	24.9	0.6		1984	9.8	
Yes 44143	68.5	42.8	0.5		7408	16.8	
Hospital factors							
Hospital area of index				< 0001			< 0001
hospitalization				<.0001			<.0001
Capital 29214	45.3	37.2	0.6		4240	14.5	
Urban 15210	23.6	40.7	0.8		2393	15.7	
Rural 20036	31.1	34.4	0.6		2759	13.8	

A: P-value of the t-test comparing the mean of covariates across different groups b: P-value of chi-square test comparing the prevalence of continuous rehabilitation therapy across the different groups

- The number of rehabilitation treatment
- **Demographic factors**
 - Age, sex, Income levels, residential area

Clinical factors

- Type of stroke, chronic obstructive pulmonary disease, diabetes, hypertension, hear failure, coronary artery disease, arrhythmia, readmission, LOS / ICU / ER / PEG-tube / L-tube of index hospitalization

- Hospital factors
 - Hospital type / Hospital area of index hospitalization

Study design & Analysis

> Analysis model

- Simple regression
- Multiple regression:
 - Model I: Demographic
 - Model II: Demographic + Clinical Model III: Demographic + Hospital
 - Model IV: Demographic + Clinical + Hospital

> Linear regression

- Risk factor analysis for obstacles of the number of rehabilitation treatment.

> Logistic regression

- Risk factor analysis for obstacles of receiving rehabilitation.

Fig1. Association between residential & hospital area and rehabilitation therapy.

CONCLUSIONS

The results might imply there were gaps in receiving adequate rehabilitation by patients' income and regional access to the first hospital.