

Two cases of pulmonary rehabilitation in lung cancer patients aged 80 and above

Jae Sik Seo¹, Byung Hoon Lee¹, Tae Sung Park², Sang Hun Kim¹, Myung-Jun Shin^{3*}

¹Department of Rehabilitation Medicine, Biomedical Research Institute, Pusan National University Hospital ²Department of Convergence Medical Institute of Technology, Biomedical Research Institute, Pusan National University Hospital ³Department of Rehabilitation Medicine, Biomedical Research Institute, Pusan National University Hospital, **Pusan National University School of Medicine** *Corresponding Author : Myung Jun Shin (drshinmj@gmail.com)

Introduction

Pulmonary rehabilitation provided to lung cancer patients can be broadly categorized into two main types. Pre- and post-operative pulmonary rehabilitation aims to reduce surgical complications and facilitate swift recovery. Additionally, pulmonary rehabilitation before and after concomitant cheomo-radiation therapy can help patients maintain their physical function. This study aims to examine the clinical significance of pulmonary rehabilitation in two distinct scenarios: observing changes in physical function in elderly patients who underwent surgery and were followed up for five years, compared to elderly patients who underwent concomitant chemo-radiation therapy (CCRT) without surgery. Through observing these distinct cases, we seek to discuss the potential clinical implications of pulmonary rehabilitation in each situation.

Methods

The subjects of this study were two elderly male individuals in their eighties who were diagnosed with lung cancer. Their physical function records were examined to observe changes in physical function levels. Physical function was assessed through the six-minute walk test (6MWT) distance and respiratory muscle strength. Respiratory muscle strength includes maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP).

Results

The study revealed that while there was a general decline in physical function immediately following surgery, it gradually improved to a certain level with ongoing pulmonary rehabilitation. This level was then either maintained or further enhanced in the final assessment conducted after 3 to 5 years. Pulmonary rehabilitation services were found to be beneficial in maintaining the physical capacity for walking over 500 meters in 6 minutes even at the age of 80 or older. The second case involves a patient who was diagnosed with COPD after undergoing CCRT. Despite reaching the age of 80 and experiencing significant respiratory muscle weakness upon starting rehabilitation, the patient managed to maintain their physical function through regular outpatient visits. Although he required hospitalization for pneumonia treatment, he was able to maintain his walking ability. While his recent walking performance has slightly declined, he continue to engage in desired activities at home, resulting in high satisfaction levels among both the patient and

family.

Table 1. Physical Function Evaluation Information for Case 1

82	Date of	Age	Height	Weight	6MWT	MIP	MEP	
	evaluation	(years)	(cm)	(kg)	(m)	(cmH ₂ 0)	(cmH ₂ 0)	
5	2018.03.23	75	Lung cancer (pleomorphic carcinoma, T3N0, stage IIB)					
Diagnosis								
			HT/DM/Hepatitis/Tb -/-/-/-					
Operation	2018.04.11.	75	Left upper lobe lobectomy,					
Operation			wedge resection of Left lower lobe					
POD 9	2018.04.19	75		50.8	375	49	66	
POD 34	2018.05.14	75		50.8	443	66	84	
CTx	2018.05~08	75	Adjuvant vinorelbine / cisplatin					
POD 56	2018.06.05	75		52.5	465	83	87	
POD 133	2018.08.21	75		55.5	481	61	100	
POD 231	2018.11.27	75	164.1	58.6	540	79	108	
POD 308	2019.02.12	76		58.9	534	85	94	
POD 476	2019.07.30	76		59.3	536	90	102	
POD 609	2019.12.10	77		59.6	571	80	93	
POD 882	2020.09.08	78		56.6	521	81	97	
POD 1770	2023.02.13	80		56		65	72	

6MWT, six-minute walk test; MIP, maximal inspiratory pressure; MEP maximal expiratory pressure; HT, hypertension; DM, diabetes mellitus; Tb, tuberculosis; POD, post-operative day; CTx, chemotherapy

Table 2. Physical Function Evaluation Information for Case 2

	Date of	Age	Height	Weight	6MWT	MIP	MEP	
	evaluation	(years)	(cm)	(kg)	(m)	(cmH ₂ 0)	(cmH ₂ 0)	
	2017.10.19.	79	Small cell lung cancer					
Diagnosis			Intracranial cerebral hemorrhage					
			HT/DM/Hepatitis/Tb -/-/-/-					
CCRT	~2018.05	80	Seoul Asan medical center					
Co-Diagnosis	2018.12.06	80	COPD + pulmonary rehabilitation start					
	2018.12.00		ex-smoker, 40 PY, 20 YA					
PRD 1	2018.12.06	80		57.6	497	30	84	
PRD 71	2019.02.14	81	159.2	58.7	438	36	98	
PRD 133	2019.04.17	81		56.7	449	32	96	
PRD 215	2019.07.08	81		58.2	425	61	122	
PRD 412	2020.01.21	82		58.5	429	33	71	
Admission	2020.02.22	82	Pneumonia (~2020.03.05)					
PRD 554	2020.06.11	82		57	438	54	86	
PRD 806	2021.02.18	83		59.2	434	55	91	
PRD 1156	2022.02.03	84		60	369	52	76	

6MWT, six-minute walk test; MIP, maximal inspiratory pressure; MEP maximal expiratory pressure; HT, hypertension; DM, diabetes mellitus; Tb, tuberculosis; CCRT, concomitant cheomoradiation therapy; COPD, chronic obstructive pulmonary disease; PY, pack years; YA, years ago; PRD, post-rehabilitation day

Case 1

60

40

20

365

730

Conclusion

These cases illustrate the potential of regular pulmonary rehabilitation in maintaining or improving physical function in elderly lung cancer patients aged 80 and above. Continuous and long-term pulmonary rehabilitation has been observed to prevent the decline in physical function, thus benefiting the elderly population and contributing to higher levels of self-satisfaction. Based on these experiences, it is believed that rehabilitation providing long-term programs for elderly lung cancer patients is necessary. However, further research examining the socioeconomic impact is definitive needed to draw more conclusions.

400

300

200

365

730

1460

(PRD)

1095

1095

1460

(PRD)